
Solutions to Problems Chapter 1 
 

l. Derive the wave equation for the electric and magnetic fields starting from Maxwell’s 
equations in a homogeneous isotropic source free region (see Chapter 3).  How does this change 
if the material is anisotropic? 
 
A1. This is an exercise in vector manipulations.  By taking the curl of both sides of 
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If the material is anisotropic, the wave equation becomes a little more complicated.  For 

instance, in space free of all independent current sources,   22 / tEE 
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2. Find from first principles the Fourier series coefficients for a periodic square wave s(x) of unit 
amplitude and 50% duty cycle.  Now find the Fourier series coefficients of s2(x) (a) from first 
principles and (b) using the Laurent rule.  Plot s2(x) vs x by employing the Fourier series 
coefficients you found using (b).  Use 5, 10 and 100 Fourier coefficients.  Describe the general 
trend(s). 
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3. Find the two-dimensional Fourier transform of a rectangle (rect) function of unit height and 
width a in each dimension. 
 
A3. The Fourier transform in one transverse dimension (x) is 
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4. Show that the two-dimensional Fourier transform of a Gaussian function of width w is another 
Gaussian function.  Functions like this are called self- Fourier transformable.  Find its width in 
the spatial frequency domain.  Can you think of any other functions that are self-Fourier 
transformable? 
 
A4. Assume a two-dimensional Gaussian of the form 222 exp)(exp),( ryxyxf  .  The 
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The integral is equal to  , so that  4/exp)( 2
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Other examples of self-Fourier-transformable function is )(sec)(sec),( yhxhyxf   and 
)()(),( ycombxcombyxf  where the comb is a periodic sequence of delta functions. 

 



5. Find the Hankel transform of (a) a circular function defined as )/()( 0 circg  , which has 

a value of 1 within a circle of radius 0  and is 0 otherwise; (b) a Gaussian function given by 
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A5. The 2-D Fourier transform, or the Hankel transform, is defined by transforming the 2-D 
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to polar coordinates by 
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where we have used the integral definition of the Bessel function 0J .  

(a)  If )/()( 0 circg  , )(
2

)(2)( 01
0

0

0

0




 






 kJ
k

dkJkG   , using the integral 

definition of the Bessel function 1J . 

(b) If 2
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, using integral tables.  All 

integral tables and integral definitions are taken from Gradshteyn and Ryzhik, Table of Integrals, 
Series and Products, Academic, New York (1980). 
 
6. Find the DFT of a square wave function using a software of your choice.  Comment on the 
nature of the spectrum numerically computed as the width of the square wave changes. 
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7. Find Asin where A  is a matrix given by 
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A7. The eigenvalues of the matrix A are 3,2,13,2,1 i , respectively.  Now by the Cayley-

Hamilton theorem, 2
210sin AaAaIaA  and 3,2,1,sin 2

210  iaaa iii  .  Therefore 

,933sin

,422sin

,1sin

210

210

210

aaa

aaa

aaa





 

from which it follows that  
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Substituting these values into 2
210sin AaAaIaA  finally gives 
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Solutions to Problems Chapter 2 
 
l. Assume a Gaussian beam in air with plane wavefronts and waist 0w  at a distance 0d  from a 

converging lens of focal length f .   
(a) Using the laws of q-transformation, find the distance behind the lens where the Gaussian 
beam focuses, i.e., again has plane wavefronts.  
(b) Using the beam propagation method, simulate the propagation of the beam through air and 
through a lens.   
(c) By setting fd 0 , determine the profile of the beam a distance f  behind the lens.   

(d) By setting fd 20  , determine the profile of the beam distances f  and f2 behind the lens.   

 
A1. (a) Using laws of q-transformation, the q after the lens and after a distance of propagation  z 
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When the Gaussian beam focuses, its q becomes purely imaginary again; hence its real part 

becomes equal to zero.  Using the above relations, this occurs at 
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(b) Assume initial Gaussian beam with mmw 1.00  , wavelength m 5.0 . 

 
Beam propagates by the Rayleigh range fmmzR  8.63 , the focal length of the lens. 

 
Immediately after lens, the phase should be equal in magnitude to the incident phase but opposite 
in sign. 


