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Solutions to Problems Chapter 1

. Derive the wave equation for the electric and magnetic fields starting from Maxwell’s
equations in a homogeneous isotropic source free region (see Chapter 3). How does this change
if the material is anisotropic?

Al. This is an exercise in vector manipulations. By taking the curl of both sides of
VxE=0B/0twe get VxVxE=-ud(VxH)/ot, where we have used the constitutive
relation B = pH and assumed u to be a space- and time-independent scalar. Now, employing
VxH=J=J +J,=J.+dD/ot, the above equation becomes
VxVxE =—pgd®E /ot — udJ,/dt, where we have used the constitutive relation D =¢E and
assumed & to be a space- and time-independent scalar. Thereafter, by using the vector
relationship VxVxE=V(VeE)-V’E, we get V’E-pued’E/ot’ =pudJ,/0t+V(VeE).
Finally by using VeD=pand the constitutive relation for Dabove, we obtain
V2E — ugd*E/ot* = udJ, 1ot +(1/ &)Vp.

If the material is anisotropic, the wave equation becomes a little more complicated. For
instance, in space free of all independent current sources, VxV x E = —ya2(?E )/ ot* . Assuming

monochromatic plane wave dependence of the electric field of the form exp j(a)ot—l;0 ‘R), the

wave equation above becomes k, x k, x E + @, u;E =0.

2. Find from first principles the Fourier series coefficients for a periodic square wave s(x) of unit
amplitude and 50% duty cycle. Now find the Fourier series coefficients of s*(x) (a) from first
principles and (b) using the Laurent rule. Plot s*(x) vs x by employing the Fourier series
coefficients you found using (b). Use 5, 10 and 100 Fourier coefficients. Describe the general

trend(s).
1V-0.25<x<0.25 . . )
A2. Assume s(x)= ; then the Fourier coefficients are given by
0Vv0.25<x<0.75
o _ Lsin(nr/2)

F = I e "™ dy

-0.25

Since in this case s”(x)=s(x), its Fourier coefficients, call
2 (nz/2)

that H,, must be the same. Laurent’s rule states that A, = Z F_F. .
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Fourier Series approximation of a square wave of period T=1.
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Fourier series approximation of s(x) and sz(x)
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Fourier series approximation of sz(x)
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3. Find the two-dimensional Fourier transform of a rectangle (recf) function of unit height and
width a in each dimension.

A3. The Fourier transform n one transverse dimension (x) 1S
0 al?2 . . .

k al2—exp— jk.al2 k.al2
j rect(x/a)exp jk xdx = j 1-exp jk xdx = it XpT K AT2 _ ST The

w —al2 Jk, k.al2

i 2\ sink a/2
result in the y-dimension is similar, so that 3_[rect(x/a,y/a)=a’ sink,a/ - .
’ k.al2 k.al2

4. Show that the two-dimensional Fourier transform of a Gaussian function of width w is another
Gaussian function. Functions like this are called self- Fourier transformable. Find its width in
the spatial frequency domain. Can you think of any other functions that are self-Fourier
transformable?

A4. Assume a two-dimensional Gaussian of the form f(x,y)=exp— (x> +y’)=exp—r>. The

2D Fourier transform is F(k,.k,)= [ [ f(x,y)exp jtk.x+k,y)dxdy = F(k,)F,(k,), where

F (k)= j exp— x> eexp jk xdx = exp— kx2/4j exp—(x— jk, /2)*dx=exp—k,’ /4 j exp— x> dx'

The integral is equal to Jr, so that Fi(k)= N exp—k, /4. Similarly
F,y(k,)= \/;exp— ky2 /4, hence, F(k, .k, )=mexp— (kx2 + kyz)/4 , which is also a Gaussian.
Other examples of self-Fourier-transformable function is f(x,y)=sech(x)esech(y) and
f(x,y)=comb(x)ecomb(y)where the comb is a periodic sequence of delta functions.



5. Find the Hankel transform of (a) a circular function defined as g(p) = circ(p/ p,) , which has

a value of 1 within a circle of radius p, and is 0 otherwise; (b) a Gaussian function given by

g(p)=exp—(p/p,)’.
AS5. The 2-D Fourier transform, or the Hankel transform, is defined by transforming the 2-D

Fourier transform integral G(k,,k,)= J. .[ g(x,y)exp j(k,x+k,y)dxdyto polar coordinates by

substituting x=pcost,y=psinb;k =k, cosg,k, =k, sing. This transforms the above
w 21 )

integral to G(k,.$)=[ [ pE(p)exp jk,pcos(@-§)dbip=2x| pg(p)Jy(k,p)dp=G(k,),
(U] 0

where we have used the integral definition of the Bessel function J|, .

(@) Ifg(p)=circ(p/p,), C_;(kp) - 27[.[ Aok, p)ip = 2Zp0

Jy(k,p,), using the integral
P
definition of the Bessel function J,.

(b) If g(p) =exp—(p/p,)’,
(_?(kp) = 27ZJ. pexp(=p/ p,)°J, (k,p)dp = 7zp02 exp(—kpzpo2 /4), using integral tables. All
0

integral tables and integral definitions are taken from Gradshteyn and Ryzhik, Table of Integrals,
Series and Products, Academic, New York (1980).

6. Find the DFT of a square wave function using a software of your choice. Comment on the
nature of the spectrum numerically computed as the width of the square wave changes.

A6.
Square wave with duty cycle=1/32, Period =0.25.
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Square wave with duty cycle=1/8, Period =0.25.
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Square wave with duty cycle=1/2, Period =0.25.
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Square wave with duty cvcle=3/4, Period =0.25.
I I i i I
-0.4 -0.2 0 0.2 0.4
i i
-500 500 1000
Square wave with duty cycle=1, Period =0.25.
| I I I |
0.4 0.2 0 0.2 0.4
Spectrum
i i
-500 0 500 1000



Square wave with duty cycle 1;’210, Period=0.25
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7. Find sin 4 where A4 is a matrix given by | -1 7 1 |using the Cayley Hamilton theorem

3 0 -2

[7].

A’l. The eigenvalues of the matrix 4 are A_,; =123, respectively. Now by the Cayley-
Hamilton theorem, sin 4 = a,I +a,A+a, A" and sind, =a, +a, 4 + a,A,”,i=12,3. Therefore
sinl=a,+a, +a,,
sin2=a, +2a, +4a,,
sin3=a, +3a, +9a,,

from which it follows that
a, =3sinl-3sin2+sin3,

a, =—(5/2)sin1+4sin2—-(3/2)sin3,
a, =(1/2)sinl —sin2+(1/2)sin3.
Substituting these values into sin 4 = a,I +a,A+ a, A’ finally gives
1 20 O -9 30 10 20 -80 -20 -10 50 10
smf—-1 7 1 |={0 0 Ofsinl+| 1 -4 -1 |sin2+] -1 5 1 [sin3.
3 0 -2 -9 30 10 15 -60 -15 -6 30 6



Solutions to Problems Chapter 2

l. Assume a Gaussian beam in air with plane wavefronts and waist w, at a distance d,, from a
converging lens of focal length 1.

(a) Using the laws of g-transformation, find the distance behind the lens where the Gaussian
beam focuses, i.e., again has plane wavefronts.

(b) Using the beam propagation method, simulate the propagation of the beam through air and
through a lens.

(c) By setting d, = /', determine the profile of the beam a distance f behind the lens.

(d) By setting d, =21, determine the profile of the beam distances f and 2 f behind the lens.

Al. (a) Using laws of g-transformation, the ¢ after the lens and after a distance of propagation z
(g, +d,) +2,q, = jZa :jkoW02 /9 S0¢(z) :f[do(f_do)_zzzz]‘;jzkf .
f=(q,+d,) (f_d0)2+ZR )

When the Gaussian beam focuses, its g becomes purely imaginary again; hence its real part
f(zy +d," - fd,)
(f - d0)2 + ZR2

szR
(f=dy) +2;"
(b) Assume initial Gaussian beam with w, = 0.1mm, wavelength 4 =0.5um .

is q(z)=

becomes equal to zero. Using the above relations, this occurs at z = . The

imaginary part yields the new beam waist with a Raleigh range z,'=
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Beam propagates by the Rayleigh range z, = 63.8mm = [, the focal length of the lens.

Beam profile before the lens
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Immediately after lens, the phase should be equal in magnitude to the incident phase but opposite
in sign.
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